Using machine learning to cut fuel costs

Prove measurable fuel-saving gains throughout your shipping business.

Gareth Evans

27 Apr 2020

Shipping companies can reduce fuel consumption and lower greenhouse gas emissions by using machine learning for trim optimisation.

In addition to using machine learning to reduce fuel consumption and emissions, computer programs can also monitor hull performance, manage speed and optimise vessel routeing to lower fuel consumption by around 15%.

Ferry group DFDS is using GreenSteam’s Dynamic Trim Optimizer (DTO) to optimise vessel trim settings during roro voyages. DTO provides dynamic optimisation throughout the voyage to enable DFDS to improve fuel efficiency, says GreenSteam head of performance management Jonas Frederiksen.

DTO takes data from GreenSteam’s onboard sensors, along with data from vessel systems, weather and sea-state information. It uses this to calculate, in real-time, optimal vessel trim settings that will maximise operational efficiencyDTO provides a continuous update of trim advice to the crew, supporting actionable decision-making for the captain.

When implemented, it produced annual fuel savings of up to 6%,” Mr Frederiksen tells Maritime Optimisation & Communications. He says other shipping companies can follow this example and make the most of trim optimising solutions.

“Shipowners should take the first step towards machine learning as soon as possible to optimise performance and gain financial benefits,” says Mr Frederiksen. By reducing fuel wastage, shipowners can save costs, cut emissions and help contribute to reaching IMO’s CO2 reduction goals.

GreenSteam offers machine learning tools including Discover, Fouling Analyser, Trim Planner and Speed OptimiserDTO combines the historical baseline performance model generated by the Discover tool with real-time data from onboard sensors, vessel systems, weather and sea-state information.

Through this data, the onboard console and shore-side operations monitor the trim setting, and calculate optimal trim for current sailing conditions,” says Mr Frederiksen. “This enables the crew to make operational adjustments to minimise potential fuel wastage.

To optimise these factors during a voyage, shipowners need to collect enough data on them to understand how they impact fuel consumption,” Mr Frederiksen explains. Machine learning is the only approach capable of fully digesting the volume of data needed to ensure this level of understanding and build an accurate picture over time.

Another option is large-scale sampling processes to convert big data into usable information. However, up to 90% of all data could be discarded in some cases, increasing the risk of making incorrect operational decisions based on poor data.

“Machine learning, on the other hand, allows us to use 100% of the data collected to provide the most accurate and effective insights possible, which in turn creates a solid basis for optimisation decisions to save money and cut emissions,” says Mr Frederiksen.

Further development

GreenSteam’s performance optimisation software uses machine learning to create performance benchmarks for individual vessels by identifying their optimal performance in ideal calm sea conditions.

“From this, the software allows shipowners to understand the precise impact of each different factor – including trim, speed and hull fouling – in real-life scenarios,” Mr Frederiksen explains, and provide captains with solutions to mitigate where these are sub-optimal and manage their performance to improve fuel consumption.”

This transparency allows vessel operators to select the optimal trim, route and speed for individual vessels on specific journeys among others benefits, such as creating timely and cost-effective hull cleaning schedules.

GreenSteam is developing other machine learning technologies to enhance shipowners’ and operators’ ability to control and optimise vessel operations even further. “For example, by calculating the individual impact of each factor on different types of vessels in various sea conditions,” says Mr Frederiksen.

“In this way, shipowners and operators will be able to optimise their management of hull fouling on a preventative, rather than a reactive, basis.” They can use this for establishing more effective cleaning schedules, lowering both fuel and maintenance costs.

“This will enable vessel owners to avoid charter party claims on excessive consumption while also allowing charterers to control fouling and make more effective decisions that will help avoid fuel wastage,” says Mr Frederiksen.

Read whole article 


Book a demo

Sign up now